,,!
1727年,欧拉(euler)被指派到圣彼得堡。他在手稿《关于最近所做火炮发射试验的思考》(ditanuponexpertsderecentlyonfirgofcannon)中引入符号e表示自然对数的底数。这份手稿直到1862年才发表。1735年,欧拉引入了记号f(x)。1736年,欧拉出版了《力学》(chanica),这是第一本基于微分方程的力学教科书。约1750年,达朗贝尔研究了“三体问题”并将微积分应用到天体力学。欧拉、拉格朗日和拉普拉斯也进行三体问题的工作。1750年,法尼亚诺(giufagnano)在《数学成果》(produnitetiche)发表了他以前的大部分工作。它包含了双纽线的显著性质以及积分的加倍公式。欧拉利用这个公式证明了椭圆积分的加法公式。1751年,欧拉发表了他的复数对数理论。1755年,欧拉出版了《微分学原理》(stitunescalculidifferentialis),书的开头包含了有限差分的研究。1765年,欧拉出版了《刚体运动理论》(theoryofthensofrigidbodies),它为分析力学打下了基础。1769年,欧拉出版了他的三卷本《屈光学》(ptics)的第一卷。1769年,欧拉提出了欧拉猜想,即三个四次幂的和不是一个四次幂,四个五次幂的和不是一个五次幂,高次幂依此类推。1770年,欧拉出版了教科书《代数》(albra)。1777年,欧拉在一份手稿中引入符号i表示-1的平方根,这跟手稿直到1794年才出版。在1728年,哥德巴赫在思考一种整数数量的差值问题。哥德巴赫心想:“阶乘一般是整数的,1、2、3、4、5、6的阶乘分别为1、2、6、24、120、720。”哥德巴赫突然想:“那有没有非整数的阶乘,比如25的阶乘。”哥德巴赫直接在纸上画出了1、2、3、4、5、6的自变量和对应的变量1、2、6、24、120、720这样的函数,自己描绘出了一个像是抛物线的这种阶乘曲线。“从这样的函数上看,那必须是有的。但是,怎么样能求出那些非整数的阶乘值呢?”这种延拓的问题,哥德巴赫只知道有,但不知道如何准确的去推导。所以哥德巴赫给伯努利数学家族成员之一的丹尼尔·伯努利写了一封信,就是关于如何去求非整数的阶乘。丹尼尔·伯努利看到信件后,心里觉得惊奇,认为哥德巴赫的思想很有趣,但是自己也无法解决。恰巧欧拉在旁边,丹尼尔对欧拉说了这个事情。22岁的欧拉也瞬间来了兴趣,直接拿着哥德巴赫的手稿,开始细致研究。最终得到了震惊世界的γ函数。
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:老公的私密按摩师 奶油味暗恋 星铁,人在冬城,模拟器重返乐土 陆总宠妻一见倾心 重生七王妃 练习生 穿书假千金她觉醒了反向读心术安沐安然 霸占新妻:总裁大人太用力 本王想静静 咬欢 农女有喜 老公出轨以后 霸总娇宠第一名媛妻 不让我当太子?那就登基吧 首辅大人的娇表妹 散修家族崛起录 重生后我只做正確选择 穿成校花女主的备胎他妈 一切从复制开始 你才回头草
好书推荐: