,,!
阿贝尔认为,会有很多的数学问题都会不自觉的转化成级数的问题。而研究级数的问题,最重要的只有一点,就是级数是不是发散的。阿贝尔认为发散的级数就没有了研究意义,只有收敛的级数才是有价值的,所以只要数学问题与收敛的级数联系在一起,那还有价值,值得研究下去。可是,如果才能快速的判断级数是否是收敛的呢?一般要根据级数的性质来看的。阿贝尔还是希望能找到简单的数学方法可以快速的判断级数是否是可以收敛的。级数如果带有x变量的情况下,带入什么样的值才能达到收敛的效果呢?阿贝尔认为:1如果幂级数在点x0处(x0不等于0)收敛,则对于适合不等式|x|2反之,如果幂级数在点x1处发散,则对于适合不等式|x|>|x1|的一切x使这幂级数发散。这样去假设,是因为幂级数有单调性,这种单调性看似简单,但是却很重要。
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:不让我当太子?那就登基吧 咬欢 本王想静静 重生七王妃 奶油味暗恋 穿书假千金她觉醒了反向读心术安沐安然 散修家族崛起录 陆总宠妻一见倾心 农女有喜 你才回头草 一切从复制开始 霸占新妻:总裁大人太用力 练习生 老公的私密按摩师 首辅大人的娇表妹 老公出轨以后 穿成校花女主的备胎他妈 星铁,人在冬城,模拟器重返乐土 重生后我只做正確选择 霸总娇宠第一名媛妻
好书推荐: